skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schatz, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To study the urban heat island and other local climatic processes in Madison, Wisconsin, in March 2012, 135 HOBO U23 Pro v2 temperature/relative humidity sensors in RS1 solar shields (Onset Computing) were attached to streetlight and utility poles in and around Madison, Wisconsin. Additional locations were added in 2012 and 2013 for a total of 150 locations. The sensors were installed at a height of 3.5 meters, and they automatically record instantaneous temperature and relative humidity every 15 minutes. This dataset includes all temperature/humidity measurements and a separate file with the coordinates of each measurement location. 
    more » « less
  2. Abstract Monitoring and understanding the variability of heat within cities is important for urban planning and public health, and the number of studies measuring intraurban temperature variability is growing. Recognizing that the physiological effects of heat depend on humidity as well as temperature, measurement campaigns have included measurements of relative humidity alongside temperature. However, the role the spatial structure in humidity, independent from temperature, plays in intraurban heat variability is unknown. Here we use summer temperature and humidity from networks of stationary sensors in multiple cities in the United States to show spatial variations in the absolute humidity within these cities are weak. This variability in absolute humidity plays an insignificant role in the spatial variability of the heat index and humidity index (humidex), and the spatial variability of the heat metrics is dominated by temperature variability. Thus, results from previous studies that considered only intraurban variability in temperature will carry over to intraurban heat variability. Also, this suggests increases in humidity from green infrastructure interventions designed to reduce temperature will be minimal. In addition, a network of sensors that only measures temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location, allowing for lower-cost heat monitoring networks. Significance StatementMonitoring the variability of heat within cities is important for urban planning and public health. While the physiological effects of heat depend on temperature and humidity, it is shown that there are only weak spatial variations in the absolute humidity within nine U.S. cities, and the spatial variability of heat metrics is dominated by temperature variability. This suggests increases in humidity will be minimal resulting from green infrastructure interventions designed to reduce temperature. It also means a network of sensors that only measure temperature is sufficient to quantify the spatial variability of heat across these cities when combined with humidity measured at a single location. 
    more » « less